Closing Today: 2.1

Closing Fri:
Closing Mon: 2.3 (start now)
Note: No class Monday (MSC is closed!)
Entry Task: Find the limits

$$
f(x)=\left\{\begin{array}{cl}
\frac{12 x}{x+5} & , \text { if } x \leq 1 ; \\
\frac{x}{x-2} & , \text { if } 1<x \leq 3 \\
\text { and } x \neq 2 ; \\
\frac{x^{2}+4 x-21}{x-3} & , \text { if } x>3
\end{array}\right.
$$

1. $\lim _{x \rightarrow 1^{-}} f(x)$
2. $\lim _{x \rightarrow 1^{+}} f(x)$
3. $\lim _{x \rightarrow 2^{-}} f(x)$
4. $\lim _{x \rightarrow 2^{+}} f(x)$
5. $\lim _{x \rightarrow 3^{-}} f(x)$
6. $\lim _{x \rightarrow 3^{+}} f(x)$

Here is a picture of $f(x)$

Limit Flow Chart for

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]
$$

1. Try plugging in the value. If denominator $\neq 0$, done!
2. If denom $=\mathbf{0}$ \& numerator $\boldsymbol{\neq 0}$: Answer is $-\infty,+\infty$ or DNE. Examine the sign (pos/neg).
3. If denom $=\mathbf{0} \&$ numerator $=\mathbf{0}$, Use algebraic methods to simplify and cancel until one of them is not zero.

For the den $=0$, num = 0 case, here is a some algebra to try:
Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions
Strategy 3: Expand/Simplify
Strategy 4: Multiply by Conjugate
Strategy 5: Change Variable Strategy 6: Compare to other functions (Squeeze Thm)

Aside: The den $=0$, num $=0$ case is often called an indeterminate form. Besides $\frac{0}{0}$, some other indeterminate forms include

$$
\frac{\infty}{\infty}, \infty-\infty, 1^{\infty}, 0 \cdot \infty, \infty^{0}
$$

2.5 Continuity

A function, $f(x)$, is continuous at $\mathbf{x}=\mathbf{a}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

this implies three things

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists and is finite
3. They are the same!

Casually, we might say a function is continuous at $x=a$ if you can draw the graph across $x=a$ point without picking up your pencil.

Our textbook also defines:
Continuous from the left

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Continuous from the right

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

